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Introduction

Primary oil recovery uses natural reservoir pressure, gravity,
artificial lift techniques (e.g. pumps, explosives).

When the reservoir drive is no longer sufficient to recover oil,
engineers use enhanced oil recovery (EOR) techniques:



EOR

Source: United States Department of Energy
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Peaceman model

Single-phase, miscible displacement of one incompressible fluid by
another (neglecting gravity):

u = −K(x)

µ(c)
∇p

div u = qI − qP

 in Ω× (0,T ),

∂tc − div (D(x ,u)∇c − cu) = qI − cqP in Ω× (0,T ).

Unknowns:

• p: pressure of fluid mixture

• c: concentration (volume fraction) of injected fluid in mixture

• u: Darcy velocity of fluid mixture



Peaceman model

u = −K(x)

µ(c)
∇p

div u = qI − qP

 in Ω× (0,T ),

∂tc − div (D(x ,u)∇c − cu) = qI − cqP in Ω× (0,T ).

Data:

• K(x): absolute permeability (uniformly elliptic, bounded,
matrix-valued)

• µ(c): viscosity of fluid mixture

• D(x ,u): diffusion-dispersion tensor

• qI , qP : injection, production well source/sink terms (flow
rates at wells)



Why uniform temporal convergence?

Engineers need to predict the sweep efficiency of the recovery
process at various instants in time, and the time to breakthrough
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Image credit: Chainais-Hillairet, Droniou (SIAM J. Numer. Anal., 2007)

⇒ need a good approximation of c(·, s) for any s ∈ (0,T ).
⇒ want convergence in L∞(0,T ; L2(Ω)).



A (very) brief history of convergence
Methods employed include

• (Mixed) Finite Elements

• (Mixed) Finite Volumes

• Discontinuous Galerkin

• Method of Characteristics

• Eulerian-Lagrangian Localised Adjoint Method

See work by J. Douglas, Jr., R.E. Ewing, T. Russell, M. Wheeler.
Examples of compactness techniques:

• J. Droniou, C. Chainais-Hillairet (SIAM J. Numer. Anal.,
2007).
Mixed Finite Volumes.
cm → c in Lp(0,T ; Lq(Ω)), for all p <∞ and all q < 2.

• S. Bartels, M. Jensen, R. Müller (SIAM J. Numer. Anal.,
2009).
Discontinuous Galerkin.
cm → c in L2(0,T ; L2(Ω)).



HMM Methods

Family of methods that includes

• Hybrid Finite Volumes

• Mixed Finite Volumes

• Mimetic Finite Differences

J. Droniou, R. Eymard, T. Gallouët and R. Herbin showed (M3AS,
2010) these 3 methods are more-or-less equivalent.

⇒ can conduct convergence analysis for Peaceman model in a
reasonably abstract theoretical framework (don’t need to know
gritty details of methods)



HMM Scheme

In an abstract nutshell:

• Spatial mesh: T = (M, E) = (cells, edges)

• Temporal mesh: 0 = t(0) < t(1) < · · · < t(N) = T

• Space of discrete unknowns
XT := {c = ((cK )K∈M, (cσ)σ∈E) : vK ∈ R, vσ ∈ R}

• Space of discrete fluxes
FT := {F = (FK ,σ)K∈M,σ∈EK : FK ,σ ∈ R}

• Reconstruction operator ΠT : XT → L2(Ω)

• Discrete gradient operator ∇T : XT → L2(Ω)d

• Discrete time derivative operator δT : XT → XT



HMM Scheme

Consider sequences

(c(n))n=0,...,N ⊂ XT , (F (n))n=1,...,N ⊂ FT

For n = 1, . . . ,N,

c
(n)
K ≈ c on K × [t(n−1), t(n))

F
(n)
K ,σ ≈ −

∫
σ
u · nK ,σ dγ on [t(n−1), t(n))

Note the F
(n)
K ,σ come from the scheme for the pressure equation.



HMM Scheme
Find sequences (c(n))n=0,...,N ⊂ XT and (F (n))n=1,...,N ⊂ FT such
that c(0) = 0 and for all ϕ = (ϕ(n))n=1,...,N ⊂ XT ,

∫ T

0

∫
Ω

ΠT δT c(x , t)ΠT ϕ(x , t) dx dt

+

∫ T

0

∫
Ω
D(x ,u(x , t))∇T c(x , t) · ∇T ϕ(x , t) dx dt

+
N∑

n=1

δt(n− 1
2

)
∑
K∈M

∑
σ∈EK∩Eint
σ=K |L

[
(−F

(n)
K ,σ)+c

(n)
K − (−F

(n)
K ,σ)−c

(n)
L

]
ϕ

(n)
K

=

∫ T

0

∫
Ω

(
qI (x , t)− qP(x , t)ΠT c(x , t)

)
ΠT ϕ(x , t) dx dt,

where (−F
(n)
K ,σ)+ and (−F

(n)
K ,σ)− denote the positive and negative

parts of −F
(n)
K ,σ.



Ingredients for convergence in
L∞(0,T ; L2(Ω))

• Characterisation of convergence in L∞(0,T ; L2(Ω))

• Energy identity for continuous problem

• Estimates: energy, discrete time derivative

• Discrete Aubin-Simon compactness lemma



Convergence in L∞(0,T ; L2(Ω))

ΠTmc → c in L∞(0,T ; L2(Ω))

m
ΠTmc(Tm)→ c(T0) in L2(Ω) for all Tm → T0.

⇒ we need ∫
Ω

(ΠTmc(Tm))2 →
∫

Ω
(c(T0))2

as m→∞ (i.e. as the mesh size vanishes)



Energy identity

For any T0 ∈ (0,T ), need solution to continuous problem to satisfy

1

2

∫
Ω

c(T0)2 =

∫ T0

0

∫
Ω

cqI − 1

2

∫ T0

0

∫
Ω

c2(qI + qP)

−
∫ T0

0

∫
Ω
|D1/2(·,u)∇c |2

• Straightforward to prove if D(x ,u) is bounded. . .

• . . . but unknown if D(x ,u) grows linearly with u (as in
practice)

Identity (not inequality) is critical to strengthening convergence
from L∞(0,T ; L2(Ω)-w) to L∞(0,T ; L2(Ω)) (i.e. weak-in-space to
strong-in-space).



Estimates

Standard energy estimates:

‖ΠT c‖2
L∞(0,T ;L2(Ω)) + ‖∇T c‖2

L2(0,T ;L2(Ω)d ) ≤ C

Discrete time derivative estimate:∫ T

0
|δT c(t)|4?,T dt ≤ C ,

where | · |?,T is a discrete dual seminorm.

(Compare these to their continuous analogues)



Discrete Aubin-Simon compactness

• Sequence (XTm ,ΠTm ,∇Tm)m∈N of discretisations

• vm = (v
(n)
m )n=0,...,Nm ⊂ XTm such that, for some q > 1,

‖ΠTmvm‖L∞(0,T ;L2(Ω)) ≤ C ,

∫ T

0
|δTmvm(t)|q?,Tm dt ≤ C .

Then (ΠTmvm)m∈N has a subsequence that converges in
L∞(0,T ; L2(Ω)-w), i.e. uniformly in time and weakly in L2(Ω).



Putting it all together

Discrete Aubin-Simon implies that

ΠTmc(Tm) ⇀ c(T0) weakly in L2(Ω)

and so

lim inf
m→∞

∫
Ω

(ΠTmc(Tm))2 ≥
∫

Ω
(c(T0))2 . (1)

Recall we want ∫
Ω

(ΠTmc(Tm))2 →
∫

Ω
(c(T0))2 ,

so thanks to (1), it suffices to show

lim sup
m→∞

∫
Ω

(ΠTmc(Tm))2 ≤
∫

Ω
(c(T0))2 .



Putting it all together

Plug in ϕ = (c(1), . . . , c(km), 0, . . . , 0) ⊂ XT in the scheme, take
limit superior:

1

2
lim sup
m→∞

∫
Ω

(ΠTmc(Tm))2 ≤ lim sup
m→∞

∫ t(km)

0

∫
Ω

ΠTmcqI

− 1

2
lim inf
m→∞

∫ Tm

0

∫
Ω

(ΠTmc)2(qI + qP)

− lim inf
m→∞

∫ Tm

0

∫
Ω
D(·,um)∇Tmc · ∇Tmc

=

∫ T0

0

∫
Ω

cqI − 1

2

∫ T0

0

∫
Ω

c2(qI + qP)−
∫ T0

0

∫
Ω
|D1/2(·,u)∇c |2

(thanks to the energy identity) =
1

2

∫
Ω

(c(T0))2
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