High-Order Finite Volume Methods for Magnetohydrodynamics on Adaptive Cubed-Sphere Grids

Hans De Sterck

School of Mathematical Sciences
Monash University
Co-Authors and Acknowledgments

Lucian Ivan
now at Canadian Nuclear Laboratories, Deep River, ON

Andree Susanto

Clinton Groth

Univ. of Waterloo

MONASH University

SciNet Consortium

SciNet Consortium

Univ. of Toronto

UTIAS

(With Paul Cally)

Canadian Space Agency

Sharhcnet Consortium

ALCF Argonne National Lab

Hans De Sterck
Mathematics, Monash

High-Order MHD on Adaptive Cubed-Sphere Grids
Main Application Driver: 3D Space-Physics Flows
Compressible Magnetohydrodynamic Plasmas - Cubed-Sphere Discretization

Images courtesy of SOHO/EIT consortium and NASA

Hans De Sterck Mathematics, Monash
1. Conservation Laws - Magnetohydrodynamics
Models Compressible Conducting Fluid (Extension: Resistive MHD)

Flow Governed by 3D Compressible MHD Equations

- single-species fluid, isotropic pressure, magnetized inviscid compressible perfect gas (i.e. \(p = \rho RT \))

\[
\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho \vec{V} \\ \rho e \\ \vec{B} \end{pmatrix} + \vec{\nabla} \cdot \begin{pmatrix} \rho \vec{V} \vec{V} + \left(p + \frac{\vec{B} \cdot \vec{B}}{2} \right) \vec{I} - \vec{B} \vec{B} \\ (\rho e + p + \frac{\vec{B} \cdot \vec{B}}{2}) \vec{V} - (\vec{V} \cdot \vec{B}) \vec{B} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \eta \vec{T} \\ \eta (\nabla \times \vec{B}) \times \vec{B} \end{pmatrix}
\]

Inviscid Flux

\[T_{i,j} = B_{j,i} - B_{i,j} \]

\[
\frac{\partial \vec{U}}{\partial t} + \vec{\nabla} \cdot \vec{F}_H (\vec{U}) + \vec{\nabla} \cdot \vec{F}_E (\vec{U}, \vec{\nabla} \vec{U}) = S_{\text{num}} + S_{\text{phy}}, \quad \nabla \cdot \vec{B} = 0
\]
Hyperbolic Conservation Laws - Discontinuities

High-order numerical methods are susceptible to oscillations at discontinuities (Gibbs phenomenon).

2,621,440 cells
Topics of Today’s Talk - Our Main Project Papers

1. Ivan, De Sterck, Northrup, and Groth; “Multi-Dimensional Finite-Volume Scheme for Hyperbolic Conservation Laws on Three-Dimensional Solution-Adaptive Cubed-Sphere Grids”, *JCP 2013*
 - second-order finite-volume method for MHD flows on 3D adaptive cubed-sphere grids

2. Susanto, Ivan, De Sterck, and Groth; “High-Order Central ENO Finite-Volume Scheme with Divergence Cleaning Approach for the Ideal MHD Equations”, *JCP 2013*
 - fourth-order finite-volume method for MHD (2D)
 - how to deal with $\nabla \cdot \vec{B} = 0$ on adaptive grids with high-order accuracy

3. Ivan, De Sterck, Susanto, and Groth; “High-Order Central ENO Finite-Volume Scheme for Hyperbolic Conservation Laws on Three-Dimensional Cubed-Sphere Grids”, *JCP 2015*
 - fourth-order finite-volume method for MHD flows on cubed-sphere grids
2. Discretizations of Spherical Domains

Several Options in the Literature

- Latitude-longitude grid constructs
- Cubed sphere
- Cartesian cut-cell approach
- Geodesic grid (e.g. icosahedron)
We Consider Cubed-Sphere Grids

Sadourny, 1972; Ronchi *et. al.*, 1996

(these images: Akshay Kulkarni)
3D Cubed-Sphere Grids
3. Parallel Adaptive Mesh Refinement (AMR)
Mechanics of Block-Based AMR (Simple 2D Example)

- Berger (1984); Berger & Colella (1989); Quirk (1991); De Zeeuw & Powell (1993); Quirk & Hanebutte (1993); Berger & Saltzman (1994); Groth et al. (1999, 2000); Keppens et al. (2011)
3D Cubed-Sphere Grids with Block-Based AMR

Ivan et al., “Multi-Dimensional Finite-Volume Scheme for Hyperbolic Conservation Laws on Three-Dimensional Solution-Adaptive Cubed-Sphere Grids”, (JCP 2013)
multi-block approach, ‘all blocks are treated equally’

- multi-dimensional discretization (handle unequal stencil size)
- multi-block code with unstructured root block connectivity
- consistently keep track of \((i,j,k)\) orientation and ordering of adjacent blocks (we use ‘Computational Fluid Dynamics General Notation System’ (CGNS))

Hans De Sterck Mathematics, Monash
4. High-Order CENO FV Formulation \(O(\Delta x^n), n \geq 2 \)

Ivan et al., “High-Order Central ENO Finite-Volume Scheme for Hyperbolic Conservation Laws on Three-Dimensional Cubed-Sphere Grids”, (JCP 2015)

Semi-Discrete Integral Form for a Hexahedral Element

\[
\frac{d\bar{U}_{ijk}}{dt} = -\frac{1}{V_{ijk}} \iint_{\partial V} \left(\bar{F}_H + \bar{F}_E \right) \cdot \bar{n} \, da + \frac{1}{V_{ijk}} \iiint_V S \, dv = \mathbf{R}_{ijk}(\bar{U})
\]

Semi-Discrete Form for High-Order Residual \(\mathbf{R}_{ijk}(\bar{U}) \)

\[
\frac{d\bar{U}_{ijk}}{dt} = -\frac{1}{V_{ijk}} \sum_{l=1}^{N_f} \sum_{m=1}^{N_G} \left(\omega \left(\bar{F}_H + \bar{F}_E \right) \cdot \bar{n} \, \Delta a \right)_{ijk,l,m} + \frac{1}{V_{ijk}} \sum_{v=1}^{N_V} \left(\omega S \right)_{ijk,v}
\]

High-Order Solution Procedure

- High-order solution reconstruction
- Riemann problems at interfaces
- Time integration procedure
Flow Governed by 3D Compressible MHD Equations

- single-species fluid, isotropic pressure, magnetized inviscid compressible perfect gas (i.e. \(p = \rho RT \))

\[
\begin{align*}
\frac{\partial}{\partial t} \begin{bmatrix} \rho & \rho \vec{V} & \rho e \end{bmatrix} + \vec{\nabla} \cdot \begin{bmatrix} \rho \vec{V} \vec{V} + \left(p + \frac{\vec{B} \cdot \vec{B}}{2} \right) \vec{I} - \vec{B} \vec{B} \\ \left(\rho e + p + \frac{\vec{B} \cdot \vec{B}}{2} \right) \vec{V} - (\vec{V} \cdot \vec{B}) \vec{B} \end{bmatrix} &= S \\
\vec{\nabla} \cdot \\ \begin{bmatrix} 0 \\ 0 \\ \eta \vec{T} \\ \eta (\vec{\nabla} \times \vec{B}) \times \vec{B} \end{bmatrix} & = S
\end{align*}
\]

Inviscid Flux

\[T_{i,j} = B_{j,i} - B_{i,j} \]

\[
\frac{\partial \vec{U}}{\partial t} + \vec{\nabla} \cdot \vec{F}_H (\vec{U}) + \vec{\nabla} \cdot \vec{F}_E \left(\vec{U}, \vec{\nabla} \vec{U} \right) = S_{\text{num}} + S_{\text{phy}}, \quad \vec{\nabla} \cdot \vec{B} = 0
\]
Potential Benefits of High-Order AMR Approaches

Linear reconstruction on uniform mesh

- $E_1 = 5.04E-05$
- $E_2 = 0.00024$
- $E_3 = 0.0072$
- Cells: 4,000,000

Cubic reconstruction with AMR

- $E_1 = 8.22E-05$
- $E_2 = 0.00069$
- $E_3 = 0.00624$
- Cells: 43,300

Hans De Sterck
Mathematics, Monash

High-Order MHD on Adaptive Cubed-Sphere Grids
Overview of Central Essentially Non-Oscillatory (CENO) Reconstruction

- Use high-order CENO approach (Ivan & Groth, 2007, 2011, 2014)

\[
 u^K_{ijk}(\vec{r}) = \sum_{p_1=0}^{K} \sum_{p_2=0}^{K} \sum_{p_3=0}^{K} \sum_{p_1+p_2+p_3 \leq K} (x - \bar{x}_{ijk})^{p_1}(y - \bar{y}_{ijk})^{p_2}(z - \bar{z}_{ijk})^{p_3} D_{p_1p_2p_3}
\]

- Use a single (central) stencil for reconstruction
- Avoids multiple stencils, as in (W)ENO
- Calculate \(D_{p_1p_2p_3} \) (20 unknowns for cubic, \(K = 3 \)) by solving a least-squares problem \(\mathbb{L}D - B = 0 \) to recover averages \(\bar{u}_{\gamma\delta\zeta} \) in the supporting stencil
- Solve instead \(\mathbb{L}D_C D_C^{-1}D - B = 0 \) for accuracy; \(D = D_C (\mathbb{L}D_C)^\dagger B \); Store \(D_C (\mathbb{L}D_C)^\dagger \) for efficiency
- Use a solution smoothness indicator to identify non-smooth reconstructions (treat each variable individually)
- Switch to limited linear 2nd-order scheme to preserve monotonicity
5. High-Order Approaches to Deal with the Divergence Constraint Condition, $\nabla \cdot \vec{B} = 0$

Susanto et al., “High-Order Central ENO Finite-Volume Scheme with Divergence Cleaning Approach for the Ideal MHD Equations”, (JCP 2013)

Divergence Correction Technique: Generalized Lagrange Multiplier (GLM)-MHD (Dedner et al., 2002)

\[
\frac{\partial \vec{B}}{\partial t} + \nabla \cdot (\vec{V} \vec{B} - \vec{B} \vec{V}) + \nabla \psi = 0
\]

\[
\frac{\partial \psi}{\partial t} + c_h^2 \nabla \cdot \vec{B} = -\frac{c_h^2}{c_p^2} \psi
\]

- Solve an extra transport equation for the GLM, ψ
- $\lambda_{8,9} = \pm c_h$, the largest eigenvalue in the domain
- fits nicely into hyperbolic code; automatically handles grid resolution changes, high-order accuracy
- ψ can be discretized with low-order accuracy
- operator splitting does not degrade accuracy
High-Order Numerical Results: CENO-GLM
Magnetohydrostatic Test Case on Cartesian Box (Warburton 1999)

\[
U(x,y,z) = \left[1, \vec{0}, (\cos(\pi(y+1)) - \cos(\pi z))f(x), \cos(\pi z)f(y) + \sin(\pi(y+1))f(x), \sin(\pi z)(f(y) - f(x)), 5 + 0.5 \left(B_x^2 + B_y^2 + B_z^2 \right) \right]^T
\]

\[
f(u) = e^{-\pi(u+1)}
\]

Predicted \(\|\vec{B}\| \) field obtained using the 4th-order CENO scheme with GLM-MHD on a \(8 \times 16 \times 16 \) mesh (left). Error norms in the predicted \(B_x \) (right).
High-Order Numerical Results: CENO-GLM

Iso-Density Vortex Problem in a Periodic Cartesian Box
(MHD exact solution for a vortex in forced equilibrium)
High-Order Numerical Results

3D Rotated MHD Shu-Osher Problem (prediction of shock/entropy interaction)
High-Order Numerical Results in 2D

Orszag-Tang Vortex Problem in a Periodic Cartesian Box with Dynamic AMR IC:
\[\rho = \gamma^2, \quad v_x = -\sin(y), \quad v_y = \sin(x), \quad B_x = -\sin(y), \quad B_y = \sin(2x), \quad p = \gamma \]
High-Order Numerical Results in 2D
Orszag-Tang Vortex Problem in a Periodic Cartesian Box with Dynamic AMR
IC: $\rho = \gamma^2$, $v_x = -\sin(y)$, $v_y = \sin(x)$, $B_x = -\sin(y)$, $B_y = \sin(2x)$, $p = \gamma$

Pressure cuts at $y = 1.9635$ at two different times ($t = 2.0$ [left], and $t = 3.0$ [right]).
6. High-Order CENO on Cubed-Sphere Grids

(1) Hexas With Nonplanar Surfaces: Use a Trilinear Interpolation to Represent Hexas Accurately
2 Special Stencils: Stencil Formed With “Rotated” Cells in Degenerated Corners

Hans De Sterck
Mathematics, Monash
High-Order Numerical Results

Iso-Density Vortex Problem in a Solid-Core Cubed-Sphere Grid

\(R_o = 9, \vec{V} = (1, 1, 2), \vec{X}_{\text{initial}} = (-2, -2.5, -3), \vec{X}_{\text{final}} = (1, 0.5, 3), t = 3 \)
7. Parallel Performance (2nd-order)

Strong Scaling: Fixed Total Problem Size ($p_{ref} = 48$)
Parallel Performance (2nd-order)
Weak Scaling (constant problem size per core) up to 65,536 Cores on Mira System ($p_{ref} = 1$) – Iso-Density Vortex Problem in a Periodic Cartesian Box
8. Ongoing Work and Outlook

Further numerical developments
- high-order dynamic and anisotropic AMR in 3D
- implicit time integration (Newton-Krylov-Schwarz, nonlinear convergence acceleration, multilevel preconditioners, ...)
- AMR with adjoint error estimation
- ...

Current and Potential Applications
- Solar waves (coupled Solar interior-exterior, helioseismology)
- Stellar waves (asteroseismology)
- Solar wind interaction with Earth’s magnetosphere (space weather)
- supersonic escape from extrasolar planets (need radiative transfer)
- applications in geophysics (mantle flow), weather, climate, ...
Second-Order Numerical Results in 3D

Interaction of Solar-Wind and Moon With a Dipole Field Anomaly Near Surface

Inner sphere: **magnetic diffusion** $\partial_t \vec{B} = \eta \nabla^2 \vec{B}$; Outer domain: **ideal MHD**

Ghost-cell BCs: absorb wind on dayside; reflect \vec{V} on nightside; \vec{B} continuous

Setup and simulation (25,427,968 cells) performed by A. Susanto in PhD work
Anisotropic Refinement and Coarsening

Williamschen & Groth, “Parallel Anisotropic Block-Based Adaptive Mesh Refinement Algorithm For Three-Dimensional Flows”, AIAA, 2013
Steady Supersonic Spherical Outflow

Williamschen & Groth, “Parallel Anisotropic Block-Based Adaptive Mesh Refinement Algorithm For Three-Dimensional Flows”, AIAA, 2013, (Non-conductive Fluid)

Left: Isotropic AMR with 11,796,480 cells
Right: Anisotropic AMR with 442,368 cells
Two cubed-sphere grids embedded in a multi-block Cartesian grid

Extended 3D Cubed-Sphere Multi-Block Mesh
Thank you

Questions?
Numerical Results in 3D

Error Distribution for Reconstructed Solution of $f(x, y, z) = r^{-\frac{5}{2}}$, where r is radius.

Error Norms of Cubic Reconstruction at $r=2.6$ for $f(r)=r^{-2.5}$

33 cells

57 cells

125 cells
Central Stencils for Reconstruction \((K = 3, 4)\)

81 Cells

57 Cells

33 Cells
Step 1: Calculate α (exploit the assumption of valid Taylor series expansion in the neighbourhood)

$$\alpha = 1 - \frac{\sum\sum\sum (u^K_{\gamma\delta\zeta}(\vec{r}_{\gamma\delta\zeta}) - u^K_{ijk}(\vec{r}_{\gamma\delta\zeta}))^2}{\sum\sum\sum\sum (u^K_{\gamma\delta\zeta}(\vec{r}_{\gamma\delta\zeta}) - \bar{u}_{ijk})^2}$$

Step 2: Evaluate S (inspired by the definition of multiple-correlation coefficients, Lawson, 1974)

$$S = \frac{\alpha}{\max((1 - \alpha), \epsilon)} \frac{(\mathcal{N}_{SOS} - \mathcal{N}_D)}{(\mathcal{N}_D - 1)}$$

\mathcal{N}_{SOS} : Size of Stencil; \mathcal{N}_D : Degrees of Freedom/Unknowns; $\epsilon = 10^{-8}$

Step 3: Compare to a pass/no-pass cut-off value S_c

- if $S > S_c$ ⇒ smooth/fully-resolved solution
- if $S < S_c$ ⇒ non-smooth/discontinuous solution
- $1000 \lesssim S_c \lesssim 5000$ (determined from numerical experiments)
Behaviour of the Smoothness Indicator: \(f(\alpha) = \frac{\alpha}{1 - \alpha} \)
CENO Reconstruction of Smooth and Discontinuous Function on Cubed-Sphere Grid

Function Plot

Smoothness Indicator Distribution

Limited 2nd-order Reconstruction

4th-order Reconstruction

Block Mesh: 40^3 cells

F(x,y,z)

3.2
3
2.8
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
High-Order Numerical Results

Solution to Manufactured Problem

\[U(x, y, z) = \begin{bmatrix} r^{-\frac{5}{2}}, & \frac{x}{\sqrt{r}}, & \frac{y}{\sqrt{r}}, & \frac{z}{\sqrt{r}} + \kappa r^{\frac{5}{2}}, & \frac{x}{r^3}, & \frac{y}{r^3}, & \frac{z}{r^3} + \kappa, & r^{-\frac{5}{2}} \end{bmatrix}^T, \quad \kappa = 0.017 \]

\[R_i = 2, R_o = 3.5, M_{cf} > 0 \text{ everywhere} \]
High-Order CENO Results in Three Dimensions:
- Convergence Studies of Reconstructions
- Reconstruction of Smooth and Discontinuous Function
- Convergence Studies for MHD Manufactured Solution: Superfast Axisymmetric Inflow
Numerical Results in 3D

Reconstruction of \(f(x, y, z) = (1 - R + R^2)e^{x+y+z} \) on Cubed-Sphere Grids

Solution reconstruction obtained using the 4th-order CENO scheme on a mesh with 196,608 cells (left) and error norms for 2nd- and 4th-order (right).
High-Order 3D CENO-GLM Formulation for MHD

Accurate Evaluation of $R_{ijk}(\bar{U})$

- Use **CENO + GLM-MHD** (Dedner *et al.*, 2002) to satisfy $\nabla \cdot \vec{B} = 0$
- Susanto *et al.*, “High-Order Central ENO Finite-Volume Scheme with Divergence Cleaning Approach for the Ideal MHD Equations”, *(JCP 2013)*

More accurate numerical flux at each integration point

- Upwinding **hyperbolic flux** by solving a Riemann problem

$$\vec{F}_H = \vec{F}_H (U_L, U_R, \vec{n})$$

- Evaluate U_L, U_R more accurately using a CENO reconstruction
- Evaluate **elliptic flux** using high-order solution gradients

$$\vec{F}_E \cdot \vec{n} = \vec{F}_E (U, \vec{\nabla}U, \vec{n})$$

$$U = \frac{1}{2} (U_L + U_R) \quad \vec{\nabla}U = \frac{1}{2} (\vec{\nabla}U_L + \vec{\nabla}U_R)$$

- Evaluate $\vec{\nabla}U_L, \vec{\nabla}U_R$ using the same high-order reconstruction
- Achieve $O(\Delta x^{K+1})$ solution by selecting K and N_G appropriately (e.g., $K = 4$ with $N_G = 2$)
High-Order CENO with 3D AMR

High-order solution transfer from coarse to fine cells and vice-versa

- Evaluate volumetric integral over the cell domain:

\[
I = \int \int \int g(\vec{X}(p, q, s)) \det J \, dp \, dq \, ds \approx \sum_{m=1}^{N_v} g(\vec{X}(p_m, q_m, s_m)) \left(\det J \right)_m \omega_m = \sum_{m=1}^{N_v} g(\vec{X}_m) \tilde{\omega}_m
\]

- High-order prolongation of coarse \(u_{ijk}^{K} (\vec{X}) \) to each fine cell (e.g., octant 1):

\[
\bar{u}_1 = \frac{1}{V_1} \int \int \int u_{ijk}^{K} (\vec{X}(p, q, s)) \det J \, dp \, dq \, ds = \sum_{m=1}^{N_v} u_{ijk}^{K} (\vec{X}_m) \tilde{\omega}_m (\tilde{\omega}_m)_1 = \frac{(\tilde{\omega}_m)_1}{\omega_m}
\]

Key Elements of High-Order AMR

- Use the coarse-cell \(\vec{X}_m \) points; it avoids computing 8 trilinear mappings
- Derive weights \((\tilde{\omega}_m)_s \) s.t. to integrate exactly \(u_{ijk}^{K} (\vec{X}) \) on subdomain \(s \)
- Weights \((\tilde{\omega}_m)_s \) are specific to each canonical octant (i.e., subdomain)
- For cubic \((K = 3) \) there are 64 \(\vec{X}_m \) (i.e., \(4 \times 4 \times 4 \) tensor product)
- Restriction operator is based on conservation of fine-cell mean solutions
Second-Order FV AMR Simulation Framework

Ivan et al., “Multi-Dimensional Finite-Volume Scheme for Hyperbolic Conservation Laws on Three-Dimensional Solution-Adaptive Cubed-Sphere Grids”, (JCP 2013)
High-Order Numerical Results

Left: Euler Bow Shock \[R_i = 1, R_o = 3.7, M = 2.8 \]
Right: Magnetically Dominated Bow Shock \[R_i = 1, R_o = 6, M_{Ax} = 1.49, \theta_{vB} = 5^\circ \]
Prediction of Mach and total magnetic field, \(B_T \), by 4th-order CENO on 320 blocks

1,966,080 cells

2,621,440 cells
High-Order Numerical Results

Iso-Density Vortex Problem in a Cubed-Sphere Grid with AMR

\(R_i = 1, \quad R_o = 17, \quad \vec{V} = (1, 1, 2), \quad \vec{X}_{\text{initial}} = (0, -7, -7), \quad \vec{X}_{\text{final}} = (5, -2, 3), \quad t = 5 \)
Concluding Remarks & Future Research

Parallel High-Order AMR Simulation Framework

- Developed for 3D cubed-sphere grids and space-physics flows
- Applicable to general hexahedral as well as unstructured grids
- Achieves 4th-order accuracy for MHD using CENO + GLM-MHD
- Permits local solution-directed mesh refinement
- Relatively adequate refinement driven by smoothness-based refinement criteria
- Handles and resolves regions of strong discontinuities/shocks
- Accuracy and computational cost assessment based on test problems with analytical solutions
- Assessment of parallel performance on thousands of CPUs cores

On-Going Research

- Application to more complex space-physics problems
- Coupling of high-order scheme with anisotropic AMR